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Abstract. Considerable progress has been made in our knowledge of the spin distribution within
the proton. The recently measured limits on polarized gluons in the proton suggest polarized gluons
contribute very modestly to the proton spin. We will show that a modern, relativistic and chirally
symmetric description of the nucleon structure naturally explain the current proton spin data. Most
of the “missing" spin is carried by confined quark and antiquarks’ angular momentum.
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Introduction

During the past two decades there has been a concerted level of activity mapping the
distribution of spin (and angular momentum) onto the quarksand gluons that compose
the nucleon. This effort was sparked by the discovery by the European Muon Collabora-
tion (EMC) of a proton “spin crisis” [1]. EMC observed that the valence quarks carried
only a very small fractionΣ of the proton spin [1]. The published measurement of the
fractionΣ ≃ 14±9±21%, indicated that it could possibly be equal to zero whereas the
Ellis-Jaffe sum rule, based on the non-relativistic quark model (NRQM), predicts that
Σ = 1. The unexpectedly small EMC value forΣ generated a tremendous level of the-
oretical and experimental activity. Theoretically several well-known aspects of hadron
structure were explored [2, 3, 4] but none could generate such a small value forΣ. It was
however quickly realized that the famousU(1) axial anomaly could strongly influence
the value ofΣ and that the proton might contain a large quantity of polarized glue, see
e.g., Refs. [5, 6, 7, 8] for a mathematically elegant formulation of this possible contri-
bution to the proton spin. In addition, and in contrast to theNRQM treatment, since the
u and d quarks in the proton behave relativistically, their angular momentums will con-
tribute to the spin content of the proton. Schematically theproton spin content can be
written as

1
2

=
1
2

Σ+∆Glue +Lz

The very recent experimental measurements at CERN, DESY, JLAB, RHIC and SLAC
have shown that∆Glue gives (at best) a small contribution to the proton spin [9]. Further-
more, the accuracy of the measuredΣ-value has increased and we now know that the
sum of the quark helicities in the proton is about 1/3,

Σ = 0.33±0.03±0.05,
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which is considerably higher than the initial EMC suggestion. That polarized glue is not
the explanation for the spin problem leads us to focus again on the suggestions which
were based on physics that is more familiar to those modelingnon-perturbative QCD. In
particular, we [10] suggest that most of the missing spin of the proton must be carried as
orbital angular momentum by the quarks and anti-quarks.

Before explaining the key physics which, when combined, appear to provide a natural
explanation ofΣ, in more detail, see e.g. Ref. [10], we present a quick summary of these
phenomenologically well-established physics “factors".They are:

• The relativistic motion of the confined valence quarks
• The virtual excitation of anti-quarks in low-lying p-states generated by the one-

gluon-exchange hyperfine interaction – in nuclear physics terms this is called “an
exchange current correction"

• The pion cloud of the nucleon’s “quark core".

These three pieces of physics, tested in many independent ways (see below), all have
the effect of converting quark spin to orbital angular momentum. As explained in more
detail below (and in a recent publication [10]) the first reduces the spin by about one
third, the second yields a reduction by an amount of order 0.15, and the third gives
a multiplicative reduction by a factor of order 0.7. Combining these physics effects
reduces the fraction of the proton spin carried by its quarksto about one third, i.e.
Σ = (1− 0.35− 0.15) · 0.7 = 0.35. One important recent new observation, based on
a chiral analysis of data from lattice QCD [11], suggests very strongly that the pion
cloud contributes very little to the∆-N mass splitting. This new finding provides the
justification for combining the corrections to the spin sum arising from one-gluon-
exchange to that from the pion cloud. We now present some details of these three major
reduction factors, which lead to the small value ofΣ.

Relativistic valence quark motion

This effect onΣ was understood at the time of the EMC discovery. A spin-up, very
light quark in an s-state, moving in a confined space, has a lower Dirac component in
p-wave. The angular momentum coupling is such that for this component the spin is
preferably down and reduces the “spin content" of the valence quarks. In the bag model,
for example, where the massless quark’s ground state energyequalsΩ/R ≃ 2.043/R,
the reduction factorB = Ω/3(Ω−1) ≃ 0.65. The same factor reduces the value ofgA
from 5/3 to≃ 1.09 in a bag model and this value changes little if one uses typical
light quark current masses. (In the discussion section we will briefly indicate how our
model leads to a realisticgA value≃ 1.27.) The quark energy,Ω/R is determined by
the bag confinement condition that the quark current out of the spherical bag cavity of
radiusR is zero, i.e. in Dirac’s notation ˆr ·~j = ir̂ ·ψ†~αψ = 0 for r = R. Even in more
modern relativistic models, where quark confinement is simulated by forbidding on-
shell propagation through proper-time regularization, the reduction factor is very similar
– e.g., in Ref. [12]∆u+∆d is 0.67. The relativistic motion transfers roughly 35% of the
nucleon spin from quark spin to valence quark orbital angular momentum.



FIGURE 1. Illustration of the quark-quark hyperfine contributions which involve excited intermediate
quark states. In the figures the external probe (top verticalwavy line) couples to the i’th quark which
interacts with the second j’th quark via the effective confined gluon exchange. The intermediate quark
propagator is evaluated as a sum over confined quark modes. Figs. (a) and (b) show the three-quark
intermediate states, and (c) and (d) the one anti-quark and four quarks intermediate states. The mode sum
converges rapidly and the lowest anti-quarkP1/2 andP3/2 modes dominate the mode-sum [14].

The one-gluon-exchange hyperfine interaction

It is well established that the spin-spin interaction between quarks in a baryon, aris-
ing from the exchange of a single gluon, explains a major partof the mass difference
between the octet and decuplet baryons – e.g., the nucleon-∆ mass difference [13]. This
spin-spin interaction must therefore also play a role when an external probe interacts
with the three-quark baryon state. In the context of spin sumrules, the probe couples
to the all possible axial currents in the nucleon.That is, the probe not only senses a
single quark current but a two-quark current as well. The latter has an intermediate
confined-quark propagator connecting the vertex of the probe and the spin-spin interac-
tion between two quarks, and is similar to the exchange-current corrections which are
well known in nuclear physics. In the case of the two-quark current, investigated in de-
tail in Ref. [14] using the MIT bag model, the confined quark propagator was written as
a sum over quark eigenmodes and the dominant contributions were found to come from
the intermediate p-wave anti-quark states. The primary focus of Ref. [14] was however
the one-gluon-exchange corrections to the magnetic moments and semi-leptonic decays
of the baryon octet (see below).

Myhrer and Thomas [2] realized the importance of this correction to the flavor singlet
axial charge and hence to the proton spin, finding that it reduced the fraction of the
spin of the nucleon carried by quarks, calculated in the naive bag model by 0.15, i.e.,
Σ → Σ−3G [2]. The correction term,G, is proportional toαs times certain bag model
matrix elements [14], whereαs is determined by the “bare" nucleon-∆ mass difference.
Again, the spin lost by the quarks is compensated by orbital angular momentum of the
quarks and anti-quarks (predominantly ¯u in the p-wave).



The pion cloud

The pion cloud is an effective description of the quark-antiquark excitations which are
required by the spontaneous breaking of chiral symmetry in QCD. In fact, describing a
physical nucleon as having a pion cloud which interacts withthe valence quarks of the
quark core (the “bare” nucleon), in a manner dictated by the requirements of chiral sym-
metry, has been very successful in describing the properties of the nucleon [15, 16, 17].
The cloudy bag model (CBM) [15, 16] reflects this nucleon description where the nu-
cleon consists of a bare nucleon,|N >, with a probabilityZ ∼ 1−PNπ −P∆π ∼ 0.7, in
addition to being described as a nucleon and a pion and a∆ and a pion, with proba-
bilities PNπ ∼ 0.20−0.25 andP∆π ∼ 0.05−0.10, respectively. The phenomenological
constraints on these probabilities were discussed, e.g. [18, 19].

The pion cloud effect onΣ was investigated early by Schreiber and Thomas [4], who
wrote the corrections to the spin sum-rules for the proton and neutron explicitly in terms
of the probabilities above. To summarize Ref. [4]: the pion cloud correction to the flavor
singlet combination modifies the proton spin in the following manner:

Σ →

(

Z −
1
3

PNπ +
5
3

P∆π

)

Σ . (1)

From the point of view of the spin problem, the critical feature of the pion cloud is that
the coupling of the spin of the nucleon to the orbital angularmomentum of the pion in
theNπ Fock state favors a spin down nucleon and a pion with +1 unit oforbital angular
momentum. This too has the effect of replacing quark spin by quark and anti-quark
orbital angular momentum. Note that in the∆π Fock component the spin of the baryon
tends to point up (and the pion angular momentum down), thus enhancing the quark
spin. Nevertheless, the wave function renormalization factor, Z, dominates, yielding a
reduction by a factor between 0.7 and 0.8 for the range of probabilities quoted above.

Other “spin observables" affected by these corrections

Some of the quark hyperfine interaction (OGE) and the pion cloud corrections are
illustrated in the following two Tables. A brief summary of these corrections are:

The effective OGE (i) This correction is vital in the understanding of the measured
strength ofΣ− → n+ e− + ν̄e, see Table 2.
(ii) Essential to explain the magnetic moment inequality|µΛ| < |µΞ− |, Table 1,
(iii) OGE introduces configuration mixing in baryon-octet ground states which can
affect strongly the radiative decay of excited baryons to the ground state baryons.

Pion cloud (i) Crucial component of the neutron charge distribution.
(ii) Provides a large iso-vector contribution to the nucleon magnetic moment.
(iii) Gives the leading non-analytic chiral-loop corrections to nucleon observables.



TABLE 1. The baryon magnetic moments from the valence quark, the pion
cloud and the OGE contributions as evaluated in [14].

Baryon Quark Pion OGE Mag mom PDG−2002

µp µq δ µπ 0 2.79 +2.79

µn − 2
3µq −δ µπ

2
3G ′ −1.92 −1.91

µΣ+
8
9µq + 1

9µs
1
2δ µ∗

π 0 2.46 +2.458±0.010

µΣ− − 4
9µq + 1

9µs − 1
2δ µ∗

π − 2
3G ′ −1.20 −1.160±0.025

µΞ0 − 2
9µq −

4
9µs ≃ 0 2

3G ′ −1.20 −1.250±0.014

µΞ−
1
9µq −

4
9µs ≃ 0 − 2

3G ′ −0.73 −0.6507±0.0025

µΛ − 1
3µs 0 1

3G ′ −0.61 −0.61

TABLE 2. The semi-leptonic decays of some
baryons showing onlythe valence quarks and OGE
contributions [14]. Other corrections are implicit.

B′ → B Quark+OGE PDG−2002

n → p 5
3B + G ≃ 1.25 1.27

Σ− → n − 1
3B−2G ≃−0.34 −0.34

Λ → p B ≃ 0.72 0.72

Ξ− → Λ 1
3B−G ≃ 0.19 0.25±0.05

Epilogue

When the pion cloud or gluon exchange corrections were first discussed, each one
alone did not yield a correction large enough to resolve the “spin crisis". Furthermore,
since the pion might contribute a substantial fraction of the observed mass-splitting
between the N and∆, to combine these two corrections would reduce the strengthof
OGE. However, in the last few years the chiral analysis of quenched and full lattice
QCD calculations for the N and∆ masses as a function of quark mass [11], concluded
that pion effects likely contribute 50 MeV or less of the 300 MeV N−∆ mass difference.
We can therefore without too large an error combine the one-gluon-exchange and pion
cloud corrections in the quark spin sum. This combined correction will give aΣ between
0.35 (PNπ = 0.25,P∆π = 0.05) and 0.40 (PNπ = 0.20,P∆π = 0.10) in excellent agreement
with the modern data. We note thatgA is reproduced by the same corrections affecting
theΣ. Relativity reduces the value ofgA from 5/3 to 1.09 and OGE and the pion cloud as
well as the center-of-mass corrections will increase thegA value from 1.09 to 1.27. As
seen in Table 1 these corrections are cruzial in order to reproduce the baryon magnetic
moments, i.e. the pion isovector cloud is an important correction to the nucleon magnetic
moments and the OGE restores the ratioµp/µn ≃−3/2![14].

We have used a model of confined quarks to compute the matrix elements of the axial
current to find aΣ value relevant in the limitQ2 → ∞. Our result,Σ ∈ (0.35,0.40),



agrees very well with the experimental value. The flavor singlet spin operator however
has a non-zero anomalous dimension,γ, and the observableΣ should be renormalization
group independent and gauge-invariant as defined by Larinet al. [20]. Motivated by
the observation that a valence dominated quark model can only match experiment for
parton distribution functions at a low scale, e.g. [21], ourvalue of the quark spin would
need to be multiplied by a non-perturbative factor involving the QCDβ–function and
γ. This evolution factor is truly non-perturbative and its three-loop perturbation theory
evaluation by Larinet al. [20] is at best semi-quantitative.Nevertheless, it is rigorously
less than unity and at three-loops gave a value of order 0.6–0.8 [22]. Multiplying the
quark spin obtained above by this factor givesΣ ∈ (0.21,0.32), in excellent agreement
with the current experimental value.

In conclusion, the impressive experimental progress aimedat resolving the spin prob-
lem has established that the quarks carry about 1/3 of proton’s spin and that the gluonic
contribution appears to be too small to account for the difference. Instead, well known
nucleon structure features like the pion cloud, the quarks’hyperfine interaction, and
the relativistic motion of the confined quarks, appear to explain the modern value of
Σ. These new insights make us conclude that the missing spin should be accounted for
by the orbital angular momentum of the quarks and anti-quarks – the latter associated
with the pion cloud of the nucleon and the p-wave anti-quarksexcited by the one-gluon-
exchange hyperfine interaction. Exploring the angular momentum carried by quarks and
anti-quarks is a major focus of the scientific program of the 12 GeV Upgrade at Jefferson
Lab., and is a promising way to test the model ideas present here.
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